How Data Modeling & Machine Learning Helped Reduce Infrastructure Costs by 70%


World Surf League (WSL) is a digital-first sports league by design because no one knows exactly when the wave conditions will be right. They plan events around a two-week time window at locations around the globe. When the surf is up, the competition begins. Being all-digital allows WSL to publish content fast and stream surfing events as they occur. Fans can use a mobile app to watch live broadcasts and keep up to date with their favorite WSL athletes anywhere, anytime.

After consolidating several live events from major surfing brands onto its own video streaming platform, WSL needed better answers to questions about viewership. How many fans engage regularly? How many tune in to multiple events? Who are the superfans — the ones who drive the majority of consumption and engagement— and which new users are most likely to become superfans?


To better understand fan behavior, WSL began using Google Analytics 360 to gather data from a variety of customer touchpoints and worked with us to accelerate time to value and keep data quality high.

We combined and cleaned data from Analytics 360, Facebook and WSL’s internal system into a single data lake and modeled superfan attributes using machine learning algorithms. We then applied early engagement attributes of superfans so WSL could focus its marketing on new users.


The fan insights WSL gained using Google Analytics 360 with Google BigQuery allowed the organization to reduce cost per conversion by more than 50%, which more than doubled the efficiency of ad spend aimed at driving fan engagement and content viewership.

By focusing on higher ROI customers, WSL drives greater fan engagement with live events and digital content—without increasing its marketing budget. When weather conditions deliver the best waves and large numbers of fans are looking at content, WSL can easily scale its analytics on demand. And during the offseason, it can scale down, which has allowed it to reduce infrastructure costs by 70%.

Now its team can ask more sophisticated questions of its data: How do wave conditions affect viewership? How do athletes’ scores correlate with other factors such as wave height, time of day, or level of competition? And what exactly is a superfan worth to the business?


Download the full case study.

"Moving our infrastructure to Google Cloud has allowed us to scale our use of resources to match traffic to our website, mobile and connected device apps. During our offseason, we reduced infrastructure costs by 70% by scaling our resources down."
Christopher Culbertson VP, Marketing World Surf League
Have a Similar Project You’d Like to Talk About?
Contact Us